332. Reconstruct Itinerary

题目

Given a list of airline tickets represented by pairs of departure and arrival airports [from, to], reconstruct the itinerary in order. All of the tickets belong to a man who departs from JFK. Thus, the itinerary must begin with JFK.

Note:

  1. If there are multiple valid itineraries, you should return the itinerary that has the smallest lexical order when read as a single string. For example, the itinerary [“JFK”, “LGA”] has a smaller lexical order than [“JFK”, “LGB”].

  2. All airports are represented by three capital letters (IATA code).

  1. You may assume all tickets form at least one valid itinerary.

Example 1:

1
2
Input: [["MUC", "LHR"], ["JFK", "MUC"], ["SFO", "SJC"], ["LHR", "SFO"]]
Output: ["JFK", "MUC", "LHR", "SFO", "SJC"]

Example 2:
1
2
3
Input: [["JFK","SFO"],["JFK","ATL"],["SFO","ATL"],["ATL","JFK"],["ATL","SFO"]]
Output: ["JFK","ATL","JFK","SFO","ATL","SFO"]
Explanation: Another possible reconstruction is ["JFK","SFO","ATL","JFK","ATL","SFO"].But it is larger in lexical order.

解题思路

  • 本题是关于图的边进行遍历,每张机票都是图的一条有向边,需要找出经过每条边的路径,并且必定有解本题,则对于某个节点(非起点)其只于一个节点相邻且只存在一条边,则这个节点必定是最后访问的,否则不可能遍历完所有边,并且这种点最多一个(不包含起点)。

解法 1 — DFS + 递归

  • 解决步骤
    • 将图建立起来,建立邻接表,使用map<string, multiset<string> 来存储邻接表。使用multiset可以自动排序。(set的默认排序由小到大,multiset默认排序是由大到小
    • 从节点JKF开始DFS遍历,只要当前的映射集合multiset里面还有节点,则取出这个节点,递归遍历这个节点,同时需要将这个节点从multiset中删除掉,当映射集合multiset为空的时候,则将节点加入到结果中
    • 因为当前存储结果是回溯得到的,需要将结果的存储顺序反转输出
  • 实现代码
    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    13
    14
    15
    16
    17
    18
    19
    20
    21
    22
    class Solution {
    public:
    vector<string> findItinerary(vector<pair<string, string>> tickets) {
    vector<string> v;
    map<string, multiset<string> > myMap;
    for(auto it : tickets)
    myMap[it.first].insert(it.second);

    dfs("JFK", v, myMap);
    reverse(v.begin(), v.end());
    return v;
    }

    void dfs(string start, vector<string>& v, map<string, multiset<string> > &myMap) {
    while(myMap[start].size() > 0) {
    string next = *myMap[start].begin();
    myMap[start].erase(myMap[start].begin());
    dfs(next, v, myMap);
    }
    v.push_back(start);
    }
    };

解法 2 — DFS + 迭代

  • 思路与解法一相同,利用数据结构stack进行迭代。
  • 实现代码
    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    13
    14
    15
    16
    17
    18
    19
    20
    21
    22
    23
    24
    25
    26
    class Solution {
    public:
    vector<string> findItinerary(vector<pair<string, string>> tickets) {
    vector<string> v;
    map<string, multiset<string> > myMap;
    for(auto it : tickets)
    myMap[it.first].insert(it.second);

    stack<string> myStack;
    myStack.push("JFK");
    while(!myStack.empty()) {
    string node = myStack.top();

    if(!myMap[node].size()) {
    myStack.pop();
    v.push_back(node);
    }
    else {
    myStack.push(*myMap[node].begin());
    myMap[node].erase(myMap[node].begin());
    }
    }
    reverse(v.begin(), v.end());
    return v;
    }
    };